
Climate change appears to contribute distinc-
tively, and consistently, to accumulating range
compression among bumblebee species across
continents. Experimental relocation of bumble-
bee colonies into new areas could mitigate these
range losses. Assessments of climate change on
species’ ranges need to account for observations
across the full extent of species’ latitudinal and
thermal limits and explicitly test for interactions
with other global change drivers.
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PLACE CELLS

Autoassociative dynamics in the
generation of sequences of
hippocampal place cells
Brad E. Pfeiffer* and David J. Foster†

Neuronal circuits produce self-sustaining sequences of activity patterns, but the precise
mechanisms remain unknown. Here we provide evidence for autoassociative dynamics in
sequence generation. During sharp-wave ripple (SWR) events, hippocampal neurons
express sequenced reactivations, which we show are composed of discrete attractors.
Each attractor corresponds to a single location, the representation of which sharpens
over the course of several milliseconds, as the reactivation focuses at that location.
Subsequently, the reactivation transitions rapidly to a spatially discontiguous location.This
alternation between sharpening and transition occurs repeatedly within individual SWRs
and is locked to the slow-gamma (25 to 50 hertz) rhythm. These findings support
theoretical notions of neural network function and reveal a fundamental discretization
in the retrieval of memory in the hippocampus, together with a function for gamma
oscillations in the control of attractor dynamics.

I
n the well-knownHopfield model, a network
of recurrently excitable neurons stores dis-
crete memories as stable activity patterns
(attractors) to which partial patterns are
guaranteed to converge, based on synaptic

weights reflecting correlations between neu-
rons in the same pattern (“autoassociation”)
(1). Sequences of patterns can also be stored,
based on weights reflecting correlations be-
tween different patterns (“heteroassociation”),
but are generally unsustainable because any
noise leads to divergence in subsequent patterns.
A solution is to combine fast autoassociation for
each pattern with slower heteroassociation for
successive patterns, allowing each pattern to
be corrected via attractor network dynamics
before transitioning to the next pattern in the se-
quence (2,3). This process should result in “jumpy”
sequences that sharpen individual pattern rep-
resentations before transitioning to successive
patterns; however, direct evidence is lacking, due
largely to the difficulty of obtaining data from
very large ensembles of neurons expressing inter-
nally generated sequences recorded at the time
resolution of neuronal dynamics.
Hippocampal SWR-associated place-cell se-

quences (4–10), often termed “replay,” are aunique
experimental model in which neurons with well-
defined receptive fields are activated outside those
receptive fields and in specific temporal sequen-
ces corresponding to physical trajectories through
space, all while the animal is stationary, and thus
in the absence of corresponding sequences of
stimuli or behaviors.We recently developedmeth-
ods to record simultaneously from very large num-

bers of hippocampal neurons (up to 263) with
place fields in a single environment (10), and we
applied these recording techniques to examine
the fine structure of SWR-associated place-cell
sequences to investigate the underlying mech-
anisms of this form of memory expression and
explore the circuit-level dynamics of an attrac-
tor system in vivo.
We recorded bilateral ensemble activity from

dorsal hippocampal neurons (figs. S1 and S2) of
five rat subjects across multiple recording ses-
sions as they explored open arenas or linear tracks
(Fig. 1, A, B, G, andH).We obtained simultaneous
recordings from large populations of hippocam-
pal neurons in each recording session (80 to 263
units per session;mean± SEM= 159.2 ± 11.8 units
per session), allowing us to accurately decode
spatial information from the hippocampal ensem-
ble activity patterns using amemory-less, uniform-
prior Bayesian decoding algorithm (fig. S3) (5, 10).
We identifiedSWRs that encoded temporally com-
pressed spatial trajectories through the current
environment (Fig. 1, C to F and I to L, and fig. S4)
(10), whichwe term “trajectory events” rather than
“replay” to reflect the observation that SWRs do
not always represent a perfect replay of imme-
diately prior behavior but instead reflect a more
broad array of spatial paths (8–10). Across all
sessions in the open field and linear track, we
identified 815 and 564 SWR events, respectively,
that met our criteria to be classified as trajectory
events.
Consistentwithprior reports (5), trajectory events

displayed average velocities in a relatively nar-
row range (Fig. 2A); however, whenwe examined
trajectory events on a finer time scale, we ob-
served discontinuous trajectories, alternating be-
tween immobility (in which consecutive decoding
frames represented the same location) and rapid
movement (in which consecutive frames repre-
sented a sequential path of unique positions; fig.
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S4).We calculated for each event the step size per
frame that would be necessary to encode a smooth
trajectory and compared these predicted step sizes
to the actual step sizes observedwithin trajectory
events (Fig. 2, B and C). Observed step sizes sig-
nificantly differed from predicted, with a larger
number of very short steps and a longer tail of
larger steps (Fig. 2, B and C). The large peak ob-
served at zero arose from consecutive frames in
which the spike pattern did not change; elim-
inating this peak did not affect significance
(Wilcoxon rank-sum test, P < 10−10 for both open
field and linear track sessions). The observation
of alternating immobility and movement in tra-
jectory events was observed in two different en-
vironments with distinct behavioral requirements
and was consistent across a range of decoding
criteria, including decoding window size and de-
gree of temporal smoothing (figs. S5 to S9). These
data suggest that during SWR-based memory
expression, information is not presented in a
temporally continuous stream, but is expressed in
discrete, temporally separated units. In addition,
we observedno effect of trajectory proportion (e.g.,
start, middle, end) on stepwise movement (fig.
S10), indicating that temporal segmentation is
present throughout the entirety of a trajectory
event and is likely an inherent characteristic of
information flowduringhippocampal reactivation.
To explore mechanisms underlying the dis-

continuous flow of information within SWRs, we
measured the relative timing of movement and
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Fig. 1. Open arena and linear
track trajectory events. (A)
Schematic diagram of the open
field (circles indicate reward
wells). (B) Behavioral trajectory
for rat 1 throughout an entire
recording session. (C) Wideband
(top) and ripple-filtered (middle)
local field potential (LFP), and
raster plot of simultaneously
recorded neurons (bottom) for a
representative SWR in the open
arena ± 250 ms. (D) Decoded
position (Bayesian posterior
probability) for evenly distributed
time frames throughout the SWR
event in (C). Note that individual
frames display a tight, spatially
restricted representation.
(E) Mean decoded position
across all time frames for the
event in (C). Despite spatially
localized representations in each
individual window (D), the entire
SWR encodes a trajectory that
crosses the environment. (F)
Location (in centimeters) and
sequence of the encoded trajec-
tory in the x (top) and y axis
(middle) and movement (in cen-
timeters) between each frame
(bottom). (G to L) As in (A) to (F), for representative linear track session and trajectory event.

Fig. 2. Movement during
trajectory events. Quantification
of movement and velocities for
trajectories encoded by SWRs
during open field (left) and linear
track (right) exploration.
(A) Probability histogram (1 m/s
bins) of average trajectory event
velocities (total distance covered/
total event duration). (B and C)
Probability histogram (B) (0.1-cm
bins) and cumulative distribution
(C) of step sizes for all trajectory
events. Predicted step sizes (red)
based on evenly spaced steps.
Inset: zoomed y axis and
expanded x axis. Observed
versus predicted populations
significantly different (Wilcoxon
rank-sum test, P < 10−10 for both
open field and linear track
sessions); cumulative distributions
significantly different (two-sample
Kolmogorov-Smirnov test).
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immobility during trajectory events. We observed
that an average stationary epoch lasted 24.1 ±
0.38ms (n=3364) in open field sessions and 16.7 ±
0.25ms (n= 3011) in linear track sessions, whereas
epochs of movement had an average duration of
7.9 ± 0.09 ms (n = 3324) and 11.2 ± 0.18 ms (n =
3060) in the open field and linear track sessions,
respectively. Thus, on average, repeating cycles of
immobility andmovement occurred at roughly 30
to 40Hz, prompting us to examine the correlation
between information expression in hippocampal
reactivation events and the slow-gamma rhythm, a
prominent 25- to 50-Hz oscillation that originates
in hippocampal area CA3, one synapse upstream
from our recording location (11, 12). Consistent
with prior reports (13), we noted a transient in-
crease in slow-gamma power during trajectory
events (fig. S11). In addition,we observed that both
excitatory spiking and movement during trajec-
tory eventswerephase-lockedwith the slow-gamma
rhythm (Fig. 3, A to C and F to H, and fig. S12).
Intriguingly, the preferred phase of movement
opposed that of neural activity (Fig. 3, D and I).
Accordingly, step size was negatively correlated
with spike count during trajectory events (fig. S13),
and the total number of spikes across two con-
secutive decoding windows predicted the result-

ing step size (Fig. 3, E and J). Furthermore, we
observed a phase-dependent correlation between
movement and the sharpness of decoded position
(fig. S14). These results were replicated with
multiple decoding criteria and different degrees
of temporal smoothing (figs. S15 to S18), suggest-
ing that the correlation of movement with gamma
phase was not dependent on the data-binning
procedure. Together, these data indicate that the
temporal segmentation of trajectory events is
governed by slow-gamma oscillations and that
during phases of high neuronal activity within
the gamma cycle, spatial representation in the
hippocampus is often focused on a single loca-
tion, whereas during phases of low neuronal ac-
tivity, the spatial representation is more likely to
move to adjacent locations.
Itmight be hypothesized that systematic varia-

tion in the measurement process, or in spike num-
ber, could account for the correlation between
movement and slow-gamma phase. We asked
whether it was possible to observe smooth tra-
jectories whose movement was uncorrelated with
gamma phase using the data that we had col-
lected and our analysismethods.Without altering
place fields or the precise timing of individual
spikes (thereby preserving the correlation of in-

dividual spikes to the phase of slow gamma and
preservingphase-dependent changes inpopulation
firing rate), we created nonrandom shuffles of the
cell identities of individual spikes during trajec-
tory events to generate trajectories that followed
the same path as the original trajectory event, but
progressed smoothly rather than discontinuously
through space (fig. S19). The step sizes of these
evened trajectory events were not statistically
different from ideally smooth step sizes (Fig. 4,
A, B, D, and E, and fig. S20). Whereas the cor-
relation of spike activity to slow-gamma rhythm
was preserved, the relationship between step
size and slow-gammaphasewas abolished (Fig. 4,
C and F, and fig. S20). We further tested whether
our observation of discontinuous movement in
trajectory events was a result of poor place-field
distribution or inherent noise in neural activity.
We simulated trajectory event activity associated
with the occupancy of different positions as Pois-
son spiking based on cells’ place fields and the
spike rates typically observed during the short
time bins used to decode actual trajectory events.
We observed that all locations in the arena could
be decoded accurately (fig. S21, A and B) and that
evenly stepped sequences of positions produced
step-size distributions that were significantly
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Fig. 3. Correlation between movement, firing rate, and slow-gamma
phase. (A) Mean posterior probabilities (left, cyan line indicates temporal
sequence), movement (top right), and slow-gamma oscillation (bottom
right) for a representative trajectory event. Troughs (180° phase) in the
gamma trace indicated with dashed lines. (B and C) For all open field ses-
sions, across-session average spike probability (B) and step size (C) as a
function of slow-gamma phase (bin size = 10°) for all trajectory events. Red
line indicates running box average (box size = 8 bins). Circular correlation

Monte-Carlo P value (50,000 shuffles of gamma phase): spike probability
P < 2.00 × 10−5; step size P = 4.40 × 10−4). (D) Normalized contour plots
and circular weighted mean (arrow) for box-average spike probability (red)
and step size (blue) as a function of slow-gamma phase. (E) Mean ± SEM
probability of observing a step size greater than 10 cm (blue) or less than 4 cm
(red) as a function of spike count. (F to J) As in (A) to (E), for linear track
events. (G and H) Monte-Carlo P value: spike probability P < 2.00 × 10−5; step
size P < 2.00 × 10−5.
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more smooth than actual trajectory events (fig.
S21C). Thus, the observation of slow-gamma–
locked, discontinuous movement was not a trivial
result of our decoding methodology, spike-phase
locking, phase-dependentoscillations inpopulation-
level firing rate, place-cell sampling, or place-
field coverage.
Prior work has demonstrated that slow-gamma

power and synchrony across hippocampal areas
CA3 and CA1 are transiently increased during
both SWRs and memory-dependent tasks (13–15),
indicating that these oscillations play a prominent
role in memory consolidation and recall processes.
Although CA1 recordings cannot conclusively dem-
onstrate the source of observed slow-gamma
rhythm (16), it is thought to originate in CA3
(11, 12), a region with a large number of recur-
rent excitatory connections (17). Several studies
are consistent with the notion that this recur-
rence supports an autoassociative network in-
volved in the mnemonic process of pattern
completion (18, 19). It is recognized that un-
bounded attractor dynamics in such a network
can lead to runaway excitatory activity (20). Our
data suggest a solution to this problem, in which
attractor strength oscillates at the slow-gamma
frequency betweenhigh levels of activity [focusing
neural representation on a “unit” of information
(21), such as a single location in space] and low
levels of activity (weakening the attractor dynam-
ics to allow transition to a different unit). Our data
support the generalization to the SWR state of a
model of sequence generation during hippocam-
pal theta, in which a heteroassociative network is
identified with connectivity between dentate
gyrus and CA3, and an autoassociative network

with recurrent synapses within CA3 (22). Our data
further suggest that these processes alternate in
time during trajectory-depicting SWR events and
that slow-gamma oscillationsmay govern switching
between them. In this way, slow-gamma rhythm
may correspond to the passage of information
around a multiregional hippocampal loop.
More broadly, our findings of temporal seg-

mentation of information on the scale of the
gamma oscillation have implications formemory
and information-processing mechanisms in other
brain regions. Gamma-frequency rhythms are ob-
served throughout the brain (23), and alterations
in gamma oscillations have been linked with sev-
eral human neuropathies (24). Our data are con-
sistentwith a growing body of literature implicating
gamma oscillations in general memory functions
(14, 25–28). Furthermore, like hippocampal area
CA3, many cortical brain regions contain exten-
sive recurrent excitatory connections (29). Rhythmic
oscillations are believed to mediate communication
and information processing between brain regions
by synchronizing local circuitry with remote inputs
(30); our data point to an additional role in allowing
neuronal architectures to focus representation
while avoiding excess positive feedback.
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Fig. 4. Forced decorrelation
of movement and
slow-gamma phase.
(A) Representative trajectory
event before (top) and after
(bottom) spike ID shuffles to
smooth the encoded path
(fig. S19). (B) Probability histo-
gram of step sizes across all
smoothed open field trajectory
events. Predicted step sizes
(red) based on evenly spaced
steps (Fig. 2B).The population of
observed step sizes in the
smoothed trajectory events not
different from predicted
(Wilcoxon rank sum test,
P = 0.385). (C) Across-session
average step size as a function
of slow-gamma phase (bin
size = 10°) for all open field
smoothed trajectory events. Red
line indicates running box aver-
age (box size = 8 bins). No
circular correlation observed
between smoothed step size and
slow-gamma phase (50,000
shuffles of gamma phase,
Monte-Carlo P value = 0.632).
(D to F) As in (A) to (C), for linear track sessions. (E) Wilcoxon rank sum test, P = 0.862. (F) Monte-Carlo P value = 0.105.
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